Bifurcation Analysis of Three-Phase Grid-connected Converters

نویسندگان

  • Meng HUANG
  • C. K. Michael Tse
چکیده

This thesis aims to identify and analyze the nonlinear behavior in the threephase voltage source converter, which is widely used as an interface converter in a distributed hybrid power system (DHPS). In this system, the converter does not work as a standalone converter but operates as a subsystem that connects to a non-ideal power grid and interacts indirectly with other subsystems via a point of common coupling (PCC). It has been observed that specific bifurcation phenomena occur in this grid-connected system. Bifurcation analysis is carried out to identify these phenomena, and a design-oriented analysis is adopted to derive practical parameter boundaries that divide the various possible operating regimes. Specifically, a catastrophic bifurcation is identified for the three-phase voltage source converter. When this bifurcation occurs, the DC output of the converter will collapse, and the input line current will expand to a very high level, which is dangerous for the grid. A set of design-oriented parameter boundaries are given. Also, the cause of this special bifurcation is identified by inspecting the nonlinear operation of the converter circuit. This phenomenon is studied experimentally in this thesis. Furthermore, an irreversible bifurcation phenomenon is reported in a threephase voltage source converter connected to a non-ideal power grid with an interacting load, which represents a practical form of system configuration. Due to the limited input active power given to the converter by the power grid, the v DC voltage of the converter will drop when the converter fails to get the power it needs. The converter then sinks reactive power and operates “abnormally”. A large-signal analysis is adopted to identify the physical origin of the phenomenon and to locate the boundary of the instability. The phenomenon is verified experimentally. Finally, a low-frequency Hopf-type instability phenomenon in the three-phase voltage source converter is identified when the converter is connected to a nonideal power grid. An averaged model has been developed for the grid-connected converter system to predict the low-frequency instability. Additionally, as a result of the emergence of low-frequency oscillation, it is found that the stability boundary leading to a catastrophic bifurcation is significantly varied. The low-frequency instability and its effects on the stability margin are verified experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Min-Projection and the Model Predictive Strategies for Current Control of Three-Phase Grid-Connected Converters: a Comparative Study

This paper provides a detailed comparative study concerning the performance of min-projection strategy (MPS) and model predictive control (MPC) systems to control the three-phase grid connected converters. To do so, first, the converter is modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and its stability criterion is derived as a lower limit on th...

متن کامل

Control System Design and Fault-Ride-through Performance Analysis of Grid-Connected Microturbine Generation System

In recent years, microturbines as one the distributed generation sources have widly used. This paper investigates the control structure of the microturbine and analyzes its performance in grid-connected mode. In this way, first, the mechanical model of the microturbine is presented. Then, the electrical structure of the microturbine, consisting  of permanent magnet synchronous generator (PMSG) ...

متن کامل

Design of a Digital Voltage Controller in Single-Phase Grid-Connected Renewable Converters

Power decoupling of pulsating grid side power from constant source side power is one of the paramount issues in single phase-phase grid-connected renewable systems. The principal aim of such systems is the decrease of the capacitance of the decoupled capacitor. However, this causes some problems such as an increase in the total harmonic distortion (THD) of injected current to the grid and bus v...

متن کامل

Irreversible bifurcation Phenomenon in Power-Grid Connected converter Systems

Three-phase voltage source converters (VSC) are commonly used to convert ac power from a three-phase grid to a regulated dc voltage with unity input power factor. The control of the VSC is normally achieved by an outer voltage feedback loop and a sinusoidal pulse-widthmodulated (SPWM) inner current loop. However, the nonideal power grid and the presence of other interacting loads give rise to n...

متن کامل

New Strategy of Grid Connected Photovoltaic System Using Module Integrated Converters with B4 Inverter to Overcome Partial Shading Effect

This paper proposes a new configuration for solar energy conversion systems. One challenging issue of the photovoltaic (PV) systems is partial shading, and in this paper Module Integrated Converters (MIC) are used to overcome this problem in PV arrays. A few boost converters are employed as MICs to mitigate the shading effect. Furthermore, to reduce the cost and to increase the system performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013